Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Submicron Mapping of Thermal Conductivity of Thermoelectric Thin Films

Identifieur interne : 001474 ( Main/Repository ); précédent : 001473; suivant : 001475

Submicron Mapping of Thermal Conductivity of Thermoelectric Thin Films

Auteurs : RBID : Pascal:12-0293018

Descripteurs français

English descriptors

Abstract

A tool for evaluating thin-film thermal conductivity to submicron spatial resolution has been developed. The micro-instrumentation utilizes the thermoreflectance (TR) technique to characterize thermal conductivity and material uniformity. The instrument consists of a heating element for creating temperature gradients and an Invar bar with in situ temperature monitoring for heat flux measurements. The thin-film sample is sandwiched between the heater and Invar bar while a microscope is used to direct light onto a cross-section of the sample and reflected light is collected with a camera. By using this technique, we can achieve submicron spatial resolution for thermal conductivity and eliminate contributions from thermal contact resistance, thereby also eliminating the need for sample preparation other than cleaving. The method offers temperature resolution of 10 mK, spatial resolution of 200 nm, and thermal conductivity measurement with 0.01 ± 0.001 W/mK resolution. The thermal conductivity of a 0.6% ErAs:InGaAlAs thermoelectric (TE) element, prepared by molecular beam epitaxy (MBE) growth, obtained with the new instrument is 2.3 W/mK, while the average thermal conductivity obtained with the 3-omega method is 2.5 W/mK. Energy-dispersive x-ray (EDX) spectroscopy is also used to prove that the elemental composition has uniformity consistent with the material variation observed by the TR technique. Moreover, a temperature profile across a 0.6% ErAs:InGaAlAs TE element on InP substrate is imaged. Two different slopes, corresponding to different thermal conductivities, have been observed, showing that the thermal conductivity of the TE element is lower than that of the InP substrate as expected.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0293018

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Submicron Mapping of Thermal Conductivity of Thermoelectric Thin Films</title>
<author>
<name sortKey="Lo, Hsinyi" uniqKey="Lo H">Hsinyi Lo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Laboratory of Electronics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ram, Rajeev J" uniqKey="Ram R">Rajeev J. Ram</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Laboratory of Electronics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0293018</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0293018 INIST</idno>
<idno type="RBID">Pascal:12-0293018</idno>
<idno type="wicri:Area/Main/Corpus">001B39</idno>
<idno type="wicri:Area/Main/Repository">001474</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Contact thermal resistance</term>
<term>Cross section</term>
<term>Cross sections</term>
<term>Dispersive spectrometry</term>
<term>Electrical conductivity measurement</term>
<term>Erbium Arsenides</term>
<term>Growth mechanism</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Heat treatments</term>
<term>Invar</term>
<term>Molecular beam epitaxy</term>
<term>Sample preparation</term>
<term>Sandwich structures</term>
<term>Spatial resolution</term>
<term>Temperature distribution</term>
<term>Temperature gradients</term>
<term>Temperature measurement</term>
<term>Thermal conductivity</term>
<term>Thermoelectric materials</term>
<term>Thermoreflectance</term>
<term>Thin films</term>
<term>X-ray spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité thermique</term>
<term>Couche mince</term>
<term>Résolution spatiale</term>
<term>Coefficient thermoréflexion</term>
<term>Traitement thermique</term>
<term>Gradient température</term>
<term>Mesure température</term>
<term>Flux chaleur</term>
<term>Flux thermique</term>
<term>Structure sandwich</term>
<term>Coupe transversale</term>
<term>Section efficace</term>
<term>Résistance thermique contact</term>
<term>Préparation échantillon</term>
<term>Matériau thermoélectrique</term>
<term>Invar</term>
<term>Erbium Arséniure</term>
<term>Mesure conductivité électrique</term>
<term>Epitaxie jet moléculaire</term>
<term>Mécanisme croissance</term>
<term>Spectrométrie dispersive</term>
<term>Spectre RX</term>
<term>Champ température</term>
<term>Te</term>
<term>Substrat indium phosphure</term>
<term>Substrat InP</term>
<term>7350L</term>
<term>8115H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A tool for evaluating thin-film thermal conductivity to submicron spatial resolution has been developed. The micro-instrumentation utilizes the thermoreflectance (TR) technique to characterize thermal conductivity and material uniformity. The instrument consists of a heating element for creating temperature gradients and an Invar bar with in situ temperature monitoring for heat flux measurements. The thin-film sample is sandwiched between the heater and Invar bar while a microscope is used to direct light onto a cross-section of the sample and reflected light is collected with a camera. By using this technique, we can achieve submicron spatial resolution for thermal conductivity and eliminate contributions from thermal contact resistance, thereby also eliminating the need for sample preparation other than cleaving. The method offers temperature resolution of 10 mK, spatial resolution of 200 nm, and thermal conductivity measurement with 0.01 ± 0.001 W/mK resolution. The thermal conductivity of a 0.6% ErAs:InGaAlAs thermoelectric (TE) element, prepared by molecular beam epitaxy (MBE) growth, obtained with the new instrument is 2.3 W/mK, while the average thermal conductivity obtained with the 3-omega method is 2.5 W/mK. Energy-dispersive x-ray (EDX) spectroscopy is also used to prove that the elemental composition has uniformity consistent with the material variation observed by the TR technique. Moreover, a temperature profile across a 0.6% ErAs:InGaAlAs TE element on InP substrate is imaged. Two different slopes, corresponding to different thermal conductivities, have been observed, showing that the thermal conductivity of the TE element is lower than that of the InP substrate as expected.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Submicron Mapping of Thermal Conductivity of Thermoelectric Thin Films</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>International Conference on Thermoelectrics 2011</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LO (Hsinyi)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAM (Rajeev J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MORELLI (Donald)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ROSENDAHL (Lasse)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>JIHUI YANG</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>WENQING ZHANG</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Research Laboratory of Electronics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Michigan State University</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>1332-1336</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000509385480600</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0293018</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A tool for evaluating thin-film thermal conductivity to submicron spatial resolution has been developed. The micro-instrumentation utilizes the thermoreflectance (TR) technique to characterize thermal conductivity and material uniformity. The instrument consists of a heating element for creating temperature gradients and an Invar bar with in situ temperature monitoring for heat flux measurements. The thin-film sample is sandwiched between the heater and Invar bar while a microscope is used to direct light onto a cross-section of the sample and reflected light is collected with a camera. By using this technique, we can achieve submicron spatial resolution for thermal conductivity and eliminate contributions from thermal contact resistance, thereby also eliminating the need for sample preparation other than cleaving. The method offers temperature resolution of 10 mK, spatial resolution of 200 nm, and thermal conductivity measurement with 0.01 ± 0.001 W/mK resolution. The thermal conductivity of a 0.6% ErAs:InGaAlAs thermoelectric (TE) element, prepared by molecular beam epitaxy (MBE) growth, obtained with the new instrument is 2.3 W/mK, while the average thermal conductivity obtained with the 3-omega method is 2.5 W/mK. Energy-dispersive x-ray (EDX) spectroscopy is also used to prove that the elemental composition has uniformity consistent with the material variation observed by the TR technique. Moreover, a temperature profile across a 0.6% ErAs:InGaAlAs TE element on InP substrate is imaged. Two different slopes, corresponding to different thermal conductivities, have been observed, showing that the thermal conductivity of the TE element is lower than that of the InP substrate as expected.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C50L</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermal conductivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Résolution spatiale</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Spatial resolution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Coefficient thermoréflexion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thermoreflectance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gradient température</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Temperature gradients</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Mesure température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature measurement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Flux chaleur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Heat flux</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Flux thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Heat flow</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Structure sandwich</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Sandwich structures</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Coupe transversale</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cross section</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Corte transverso</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Section efficace</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cross sections</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Résistance thermique contact</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Contact thermal resistance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Resistencia térmica contacto</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Préparation échantillon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Sample preparation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau thermoélectrique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thermoelectric materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Invar</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Invar</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Erbium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Erbium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Mesure conductivité électrique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Electrical conductivity measurement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Spectre RX</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>X-ray spectra</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Champ température</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Temperature distribution</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Te</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat indium phosphure</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7350L</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>219</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Thermoelectrics</s1>
<s2>30</s2>
<s3>Traverse City, Michigan USA</s3>
<s4>2011-07-17</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001474 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001474 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0293018
   |texte=   Submicron Mapping of Thermal Conductivity of Thermoelectric Thin Films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024